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Gas adsorption meets deep 
learning: voxelizing the potential 
energy surface of metal‑organic 
frameworks
Antonios P. Sarikas 1, Konstantinos Gkagkas 2 & George E. Froudakis 1*

Intrinsic properties of metal‑organic frameworks (MOFs), such as their ultra porosity and high surface 
area, deem them promising solutions for problems involving gas adsorption. Nevertheless, due to 
their combinatorial nature, a huge number of structures is feasible which renders cumbersome the 
selection of the best candidates with traditional techniques. Recently, machine learning approaches 
have emerged as efficient tools to deal with this challenge, by allowing researchers to rapidly screen 
large databases of MOFs via predictive models. The performance of the latter is tightly tied to the 
mathematical representation of a material, thus necessitating the use of informative descriptors. In 
this work, a generalized framework to predict gaseous adsorption properties is presented, using as 
one and only descriptor the capstone of chemical information: the potential energy surface (PES). In 
order to be machine understandable, the PES is voxelized and subsequently a 3D convolutional neural 
network (CNN) is exploited to process this 3D energy image. As a proof of concept, the proposed 
pipeline is applied on predicting CO

2
 uptake in MOFs. The resulting model outperforms a conventional 

model built with geometric descriptors and requires two orders of magnitude less training data to 
reach a given level of performance. Moreover, the transferability of the approach to different host‑
guest systems is demonstrated, examining CH

4
 uptake in COFs. The generic character of the proposed 

methodology, inherited from the PES, renders it applicable to fields other than reticular chemistry.

Reticular chemistry, the science and art of combining molecular building blocks to form extended periodic struc-
tures1, has endowed chemists and material scientists with a vast chemical space, the latter serving as a giant 
toolbox that can help them to solve a wide variety of problems. Metal-organic frameworks (MOFs), a class of 
nanoporous materials composed of metal ions/clusters and organic  linkers2, exemplify this idea. Owing to their 
exceptionally high porosity and surface  area3 along with their tunable nature have burgeoned as prominent 
materials for gas-adsorption related  applications4,5. One such example, is carbon capture and  storage6, where 
MOF-based sorbents are considered green and efficient solutions.

The inherent combinatorial character of MOFs has given birth to large databases of either in vitro7,8 or in 
silico synthesized  materials9–12. Although a plethora of choices is desirable, an immense materials space inevitably 
complicates the efficient identification of the best candidates. The large size of current and prospective MOFs 
 databases13, precludes approaches such as experimental synthesis and performance characterization, since a single 
laboratory study can range from weeks to months. Performance assessment based on molecular  simulations14, 
significantly ameliorates the time penalty that accompanies the evaluation of a single structure. Nevertheless, the 
overwhelming number of MOFs that require filtering renders brute-force computational screening suboptimal.

The ever-increasing amount of data requires methods that are able to handle them efficiently and effectively. 
Machine learning (ML) techniques satisfy the aforementioned requirements and can accelerate the identifica-
tion of promising materials by means of predictive  models15–24. Given a mathematical description of a structure 
(input) and a property of interest (output), a supervised ML algorithm seeks to build a model for the underlying 
structure-property relationship. In ML parlance, inputs and outputs are known as descriptors (or features) and 
labels, respectively. “Garbage in, garbage out” applies, which entails that high-performing ML models are possible 
only if information-rich descriptors are employed.
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With regards to gas adsorption in MOFs, a commonly used set of descriptors are the so-called geometric 
 ones25–27 including properties like void fraction and gravimetric surface area. Although these descriptors lead to 
fruitful results when used to predict gas uptake at high pressures, they fall short as we transition to the low pres-
sure regime, especially when modeling gases with non-negligible electrostatic interactions, e.g. CO2 and H2 . The 
origin of these shortcomings is rooted to the inability of these descriptors to capture the fundamental factor that 
governs adsorption: host-guest interactions. Attempts have been performed to address the limitations of geometric 
descriptors, i.e. to capture the energetics of adsorption, giving rise to the so-called energy-based  descriptors28–30.

 One such work was performed by Bucior et al.32 where bins from the unit cell’s energy histogram were used 
as descriptors, leading to ML models of remarkable accuracy with regards to H2 and CH4 uptake. In another 
 study33, a set of hypothetical probe atoms were used to fingerprint the energetic landscape of the unit cell by 
averaging the interaction between the probe and framework atoms. Augmenting the set of geometric descrip-
tors with these average interactions significantly increased the performance of ML models regarding CO2 , H2S , 
H2 and CH4 uptake. Since gas adsorption essentially boils down to the potential energy surface (PES), a natural 
question that arises is why not use the PES itself as descriptor?

In this work, we propose a generalized framework for predicting gaseous adsorption properties, free of hand-
crafted features, using solely the PES as descriptor (Fig. 1). Two steps are central to this approach: 

 (i) a machine understandable format of PES
 (ii) an algorithm capable of handling effectively this format

For the first step, a voxelized representation of the PES is adopted. In essence, the input can be thought as a 3D 
image of the material, where each 3D pixel, i.e. voxel, is colorized by the values of the potential energy. For the 
second step, we resort to a deep learning34,35 solution, namely a 3D convolutional neural network (CNN). Similar 
to reticular chemistry, in deep learning—a subfield of ML—simple computational units (neurons) are combined to 
form (neural) networks, the latter being able to extract useful information from the raw input, that is to extract 
features in a completely data-driven way.

It should be added that our pipeline doesn’t impose extra computational burden compared to the afore-
described  studies32,33, since in both of them the features are extracted from the PES or an approximation thereof. 
The essential difference lies on the feature extraction step: here the algorithm decides what matters for the task at 
hand by looking on the data, removing the need for manual feature extraction.

With respect to application of CNNs on MOFs, Cho et al.36 trained a CNN by representing the structure as a 
3D binary matrix, with each matrix value indicating “available” or “non-available” adsorption sites in the struc-
ture. Notably, the CNN was capable of accurately predicting CH4 adsorption isotherms of zeolites. Following 
up this work, in order to account for the chemical diversity of MOFs, Hung and co-workers37 trained a CNN 
on two 3D matrices that encode element and point-charge information. The CNN achieved remarkable accu-
racy on predicting Henry adsorption constants for CH4 and CO2 and improved compared to the binary matrix 
approach. Nevertheless, the fact that an indirect representation of the PES is used as a descriptor, entails that the 
information content the CNN receives is not maximal. Maximum information content is possible only if the PES 
itself is used as a descriptor. Here, the CNN is trained on a single 3D matrix instead of two but more importantly, 
it looks directly on the PES. In other words, we feed the CNN with the object that completely characterizes the 
sorption behavior of a material: the PES.

Since the PES uniquely combines the structural properties and the electronic structure of a material in real 
space, the proposed scheme is applicable in any host-guest system for predicting any adsorption property of 

Figure 1.  Generalized framework for predicting adsorption properties using the entire PES as descriptor. 
Starting from PES as raw input, a CNN extract its features, and utilizes them to predict a property of interest 
(hereon gas uptake). The  iRASPA31 software was used for the visualization of IRMOF-1 PES and structure.
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interest. As a proof of concept, the suggested approach is applied on MOFs for predicting CO2 uptake. The trans-
ferability of the approach is also demonstrated, examining CH4 uptake on COFs. In both cases, the proposed 
pipeline is compared with conventional schemes where geometric descriptors are employed.

Methods
Voxelized PES
The steps for the calculation of the voxelized PES are schematically summarized in Fig. 2. As a first step, a 3D 
grid of size n× n× n is overlayed over the unit cell of the material. Hereon, n = 25 as a balance between resolu-
tion and computational cost, since voxelization scales up as O(n3) . Next, each voxel centered at grid point ri is 
colorized with the interaction energy of a probe molecule at ri with the framework atoms.

In the proposed framework, the grid size and the type of the potential are treated as “hyperparameters” 
controlling the trade-off between information content and computational cost. The ultimate representation of 
the PES is achieved as n → ∞ and when the voxels are filled with energy values obtained from ab-initio calcula-
tions. Because this study serves as a proof of concept, to facilitate the modelling of interactions, a spherical probe 
molecule is used and host-guest interactions are approximated with the Lennard-Jones (LJ) potential (for more 
details see Supplementary Information). To ease the calculation of energy voxels, the Python package MOXǫ� 
is introduced and used in all cases. For the remainder of this study, we use interchangeably the terms “voxelized 
PES” and “energy voxels”.

Convolutional neural networks
CNNs are specialized neural network architectures to process image-like  data38–41 based on convolution (Fig. 3). 
Convolving a filter with an image can be seen as template matching. When a local image patch matches the 
filter—template to be matched—the output is highly positive. Sliding the filter over the image and recording 
the output values produces a feature map. This notion generalizes to 3D. A convolutional layer, contains many 
learnable filters, each one of them looking for a different pattern and producing its own feature map based on 
feature maps from the previous layer or the raw image (in case of first convolutional layer). By composing many 
such layers, a CNN extract features hierarchically, with the level of (feature) abstraction increasing the deeper 
we go into the network.

Apart from convolutional layers, another common building block of CNNs are the pooling layers. The role 
of these layers is to downsample (reduce the resolution) in a parameter-free way the feature maps produced by 
convolutional layers. By downsampling in this manner, they reduce the memory-computational footprint of the 
CNN and also the number of parameters, thereby reducing the risk of  overfitting42. A pooling layer takes as inputs 
the feature maps of the preceding convolutional layer and subsamples them by substituting the outputs in a small 
neighborhood of the feature map with a summary  statistic35. Figure 3 illustrates the pooling layer used in this 
work, known as max pooling, which uses the max function to compute the summary statistic (same idea applies to 
3D). From the same figure it can be also seen that small translations to the input (input B is just a shifted version 
of input A by 1 pixel to the right) produce the same output when passed through the max pooling layer, meaning 
that the latter introduces into the network some level of invariance to small  translations35,42. The architecture of 
the 3D CNN used in this work called RetNet is schematically depicted in Fig. 4. More information regarding 
architecture and training details can be found on the Supplementary Information.

Results
Visualizing RetNet
A closer look at the “internals” of RetNet—the processing that energy voxels undergo as they pass through the 
network—trained on the MOFs  dataset9, is provided in Fig. 4. For the sake of clarity, only some feature maps 
from the first five layers are visualized. It should be noted that each feature map of a given layer takes into account 
all the feature maps from the previous layer, the only exception being the pooling layers which just dowsample. 
For instance, each feature map of the Conv2 layer combines all the 12 feature maps from Conv1 layer whereas 
each feature map of the MaxPool1 layer is a downsampled version of the corresponding feature map in Conv2 
layer. Although feature maps are not meant to be human interpretable (especially the ones found deeper in the 

Figure 2.  Workflow to construct the voxelized PES. The latter can then be processed by a CNN. The  iRASPA31 
software was used for the visualization of IRMOF-1 structure.
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network), it is worth to notice that the first two Conv layers highlight the texture of the structure. For example, 
it can be seen that the 3rd feature map from Conv1 layer outlines the skeleton of the framework.

The MaxPool2 layer is followed by two consecutive Conv layers and the Flatten layer flattens out all 
feature maps of Conv5 into a single vector (of size 3240) which is then processed by a fully connected neural 
network. Since Output is a linear layer (see Table S1 in the Supplementary Information), RetNet essentially 
does just the following:

In other words, it extracts a fingerprint from the PES and then uses a linear model on top of this fingerprint to 
predict the gas uptake. All the layers between Input and Output layers (i.e. from Conv1 to Dense2) are 
responsible for this feature extraction step, with the size of the fingerprint being determined by the size of the 
Dense2 layer (a 20-dimensional vector, see also Figs. S6–S7 in the Supplementary Information). This learnable 
fingerprint extraction step (parameters θ of φ are learned during training), is what fundamentally differentiates 
our method compared to approaches that use hand-crafted fingerprints32,33. Feature extraction from the PES has 
been “unlocked” and is now part of the training phase.

(1)
PES
︷︸︸︷

x
︸︷︷︸

input

−→

fingerprint
︷ ︸︸ ︷

φ(x; θ)
︸ ︷︷ ︸

feature extraction

−→

gas uptake
︷ ︸︸ ︷

w
⊤φ(x; θ)+ w0

︸ ︷︷ ︸

output

Figure 3.  (Top) Convolution operation. (Bottom) Max pooling operation.
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Learning curves
The learning curves for ML models built with energy voxels and geometric descriptors are depicted in Fig. 5. 
As can been seen, in the MOFs dataset, the CNN model ( R2 = 0.859 ) outperforms the Random Forest (RF) 
model ( R2

= 0.690 ) even with such a crude approximation for the PES (LJ potential doesn’t take into account 
electrostatic interactions). Notably, the CNN model requires two orders of magnitude less training samples, 
approximately 300, to reach the performance of the RF model. As stated previously, in this work we strived for 
minimal computational cost which means that still the information content of the voxelized PES is not maxi-
mized. As such, higher performance can be achieved by employing more refined potentials and the upper limit 
with an ab-initio constructed PES. Similar behavior is observed on the COFs  dataset43. Again, the CNN model 
generalizes better, achieving a R2 of 0.969 compared to 0.941 for the RF model. In this case, the CNN needs 
around one order of magnitude less training samples to match RF’s performance. The observation that in both 
cases the learning curve of the CNN model lies above the corresponding one of the RF model should be attributed 
(mainly) to the following two factors. First, the increased information content of the voxelized PES (input of CNN 
models) over the geometric descriptors (input of RF models). Second, the ability of CNNs to process image-like 
data (the voxelized PES is just a single-channel 3D image). It should be mentioned that another factor that gave 
a performance boost to our CNN models was the application of data augmentation during their training phase 
(see Figs. S2–S3 in the Supplementary Information).

Discussion
We would like to point out that in the case of CH4 , which lacks dipole and quadrupole moment, the LJ potential 
approximates very well the true potential, which is reflected on the increased performance of the CNN com-
pared to the CO2 case. This observation along the fact that in both cases the same resolution was used, motivates 
focusing first on refining the potential than increasing resolution in order to maximize the information content 
of the voxelized PES and as such, the performance of the ML  models33. For adsorbates like CO2 and H2 , where 
electrostatic interactions with the framework atoms are non-negligible, an accurate representation of the vox-
elized PES necessitates the inclusion of these interactions. However, there is no free lunch and such refinements 

Figure 4.  RetNet architecture and forward pass of IRMOF-1. For the sake of visualization, slices (feature 
maps are 3D matrices) of 8 feature maps from the first 5 layers are depicted. For Conv1 layer the 5th slice is 
depicted while for the other layers the 1st slice is depicted. All slices are collected along the 1st dimension of the 
corresponding 3D matrix. The  iRASPA31 software was used for the visualization of IRMOF-1 structure.
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come at the price of assigning partial charges to each framework atom, which is a computationally intensive task. 
Fortunately, there are  approaches44–46 that can assign partial charges extremely fast and with high fidelity via ML 
models, opening the door for efficient construction of an accurate voxelized PES.

Additionally, considering that the proposed framework bases its roots at interactions, which are ubiquitous 
in nature, renders it extremely modular and applicable to fields besides reticular chemistry. For example, if one 
is interested in predicting properties of organic molecules (e.g. solubility), a straightforward application of our 
framework is to voxelize the electrostatic potential map of the organic molecule and then use it as input to train 
a 3D CNN for predicting the property(ies) of interest.

Moreover, the fact that under the hood the proposed framework uses a member of the deep learning family, 
enables incorporation of transfer learning  techniques47,48, which can greatly decrease the amount of reference data 
required for the CNN training. In transfer learning, the model leverages the knowledge it has gained by solving 
an original task to solve new but similar to the original tasks. For example, instead of retraining from scratch the 
CNN for every adsorption property of interest, one can train the CNN at a specific property (original task, e.g. 
gas uptake) and then fine-tune this pre-trained model to the other properties (new tasks, e.g. gas selectivity). A 
good pre-trained model will require less training data to perform well in the new task, because it can exploit the 
shareable knowledge it has acquired by solving the original task.

Since the performance of a ML model depends highly on the informativeness of the descriptor(s) and the algo-
rithm of choice, refinements of the potential used to model host-guest interactions, architecture modifications 
along with inclusion of transfer learning techniques, can further improve the performance and data efficiency of 
the suggested pipeline. As a final note, it should be remembered that reticular chemistry and chemistry are three 
dimensional, and if we are to “machine-learn them” properly, we ought to respect it. We envision that our study 
will motivate the adoption of three dimensional inputs in future chemistry-oriented ML works.

Data availability
The energy voxels for MOFs are publicly available in: https:// figsh are. com/ artic les/ datas et/ RetNet/ 24598 845. 
The energy voxels for COFs are available from the corresponding author upon request.

Code availability
MOXǫ� , is hosted on GitHub: https:// github. com/ fruda kis- resea rch- group/ moxel and can be installed from PyPI: 
https:// pypi. org/ proje ct/ pymox el/. Documentation for the package is available at: https:// moxel. readt hedocs. 
io/ en/ stable. A PyTorch implementation of RetNet is available on GitHub: https:// github. com/ fruda kis- resea 
rch- group/ retnet.
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