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A B S T R A C T   

Unique properties of Metal-Organic Frameworks (MOFs), such as their extremely high surface areas and porosity, 
render them as one of, if not the most promising adsorbents for gas storage applications. However, their 
extremely flexible and tunable nature has resulted in an enormous expansion of the available material pool 
which in turn begs the question as to whether an efficient identification of the best materials is feasible. In the 
last years, Machine Learning (ML) techniques have been extensively applied for the exploration of large material 
databases, since they can significantly accelerate this process. In this work, “traditional” ML models and models 
based on our recently developed iterative self-consistent approach are compared with respect to their ability to 
efficiently identify the best materials of a database. As a case study, we have used hydrogen adsorption in MOFs 
at different thermodynamic conditions. Despite their high accuracy, traditional models struggle to pinpoint the 
best materials, regarding usable gravimetric uptake, without compromising computational resources. On the 
other hand, self-consistent models can even reduce by two orders of magnitude the amount of reference data 
required for the identification of the best gravimetric materials compared to traditional ones. Notably, 300 
training samples are enough for the SC models to correctly identify the top-100 gravimetric materials of a 
database. Nevertheless, both type of models underperform when they are queried for the top-performing ma
terials with regards to usable volumetric uptake.   

1. Introduction 

Owing to their inherent properties, such as high surface area and 
void fraction, Metal-Organic Frameworks (MOFs) are prominent can
didates for applications involving gas adsorption [1,2]. A prime example 
is hydrogen storage, where materials exhibiting high H2 uptakes along 
with the ability to rapidly adsorb and release the latter are needed. The 
fast kinetics, reversibility and their exceptional H2 capacities, mark 
them as one of the most promising hydrogen sorbents [3]. 

MOFs are nanoporous crystalline materials consisting of a metal ion 
or a metal cluster and organic linkers, collectively known as building 
blocks [4]. The metal corners are connected in space with organic 
linkers forming a three dimensional network. The amount of potential 
components is enormous and as a result the number of structures that 
can be realized, either experimentally [5,6] or in silico, is unlimited 

[7–9]. Computer-aided design has been adopted in the last years, giving 
birth to large databases of hypothetical MOFs. One of the first hypo
thetical databases were constructed by Wilmer et al. [10] where the 
combination of 102 different building blocks, generated 137,953 
structures. In contrast to this bottom-up approach, a top-down generator 
was also introduced [11], where topological fingerprints are used as a 
template for the construction of hypothetical MOFs. More recently, over 
100 trillions MOFs can be constructed with the help of an advanced 
porous material generator [12]. This vast expansion of the available 
material pool unavoidably leads to the following challenge: how the 
optimal materials for a given application can be identified from this 
huge ”search space” in an efficient manner? 

Over the past few decades, molecular simulations served as the main 
tool to speed up the discovery and performance characterization of new 
materials. Particularly, grand canonical Monte Carlo (GCMC) 
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simulations have been widely performed for the assessment of nano
porous materials regarding uptake capacities of various gas species 
[13–20]. Despite their efficiency compared to traditional approaches, 
such as experimental synthesis and characterization, applying brute 
force screening in databases of the aforementioned size is apparently 
prohibitive. Notice that, a single GCMC simulation (under certain 
thermodynamic conditions) for the ZIF-8/H2O system required 115 days 
to converge, as reported by [21]. Although simulations for gases such as 
CH4 and H2 require significantly less time (minutes or few hours per 
material), they are still costly if rapid screening of huge databases is 
desired. 

In the era of big data, supervised ML methods [22–26] can pave the 
way towards efficient screening as they require a substantially smaller 
amount of data compared to traditional methods. These data, which can 
be collected through experiments or simulations, serve to train the ML 
algorithm. The ML model obtained after the end of training phase, ap
proximates the relationship between some input variables and an output 
variable. In machine learning jargon, the input variables are called de
scriptors (or features) and the output variable is called label, which can 
be either continuous (target) or categorical (class). An important step 
prior to training, is the selection of the descriptors. The latter should be 
chosen in a reasonable manner, so the algorithm is able to extract a 
meaningful structure-property relationship. In the case of nanoporous 
materials, various structural features such as surface area, void fraction 
and pore volume have been employed as descriptors, giving rise to ML 
models of satisfactory accuracy [27]. Performance enhancements can be 
attained by introducing more complex descriptors, taking into account 
the chemical environment and the energetic landscape of the pore 
[28–34]. Employing such a set of descriptors, can reduce the training set 
size required to exceed a threshold accuracy compared to structural 
features [35–37]. Once the ML model has been built, screening of large 
databases can be performed in just few minutes (or even seconds), that is 
in less than the cost of a single GCMC simulation. 

Regarding the identification of materials with the potential of 
exhibiting high hydrogen capacities, ML predictive models have been 
developed and employed for the in silico screening of large datasets. 
Thornton et al. [38] used ML based approaches for the high-throughput 
screening of nanoporous materials for hydrogen storage at room and at 
cryogenic temperatures and at pressures between 100 and 1 bar. More 
than 850,000 hypothetical and synthesized porous crystalline materials 
were examined. An iterative procedure was employed for the identifi
cation of the most promising candidates. During this procedure suc
cessive ML models were trained using training sets of incremental sizes. 
The materials added each time in the training data, were determined by 
an ML model during the previous iteration. In total, reference data for 
only a small portion of the dataset (3,000 out of the 850,000 MOFs) were 
computed by GCMC simulations. One of the most important conclusions 
of the study was that many of the top-performing materials for hydrogen 
storage have been already synthesized. 

In one of the most recent and extensive studies regarding hydrogen 
storage in MOFs [39], ML models were employed to screen a vast 
database of approximately 918,000 MOFs. For 98,695 MOFs GCMC 
simulations were initially performed and their working capacities at four 
different thermodynamic conditions were determined. Prior to the 
exploration of the database, 14 ML algorithms were trained to predict 
the working capacities at the various conditions. Information for 74,201 
MOFs was used for the training of the ML algorithms while the 
remaining 24,674 MOFs were used for assessing the performance of the 
predictive models. In all cases 7 structural features of MOFs were used as 
descriptors. The extremely randomized trees (ERT) algorithm showed 
the best performance among the algorithms examined. In terms of sta
tistical accuracy the values of the coefficient of determination (R2) sta
tistical metric were impressively high ranging between 0.967 and 0.997 
for the four cases examined. The predictive model was subsequently 
applied to the remaining unknown MOFs of the database and 8,282 
MOFs were identified with the potential of their working capacities to 

exceed that of the state-of-the-art materials. 
Although highly accurate ML models are desirable, minimizing the 

amount of reference data required for the training of the ML algorithms 
is of equal importance if we are interested in fast screening of large 
databases. In the present work, we will argue that although ML models 
with excellent performance—in terms of statistical accuracy—may be 
constructed, they should be cautiously used for screening purposes 
during the identification of the most promising materials. For this reason 
we will evaluate two different approaches: in the first most commonly 
used approach, ML algorithms will be trained on a portion of the 
available data and will be evaluated based on their predictions for the 
top-performing materials. In the second approach we will employ our 
previously developed iterative, self-consistent (SC) approach [40] which 
attempts to directly identify promising candidates, using the lesser 
possible information in a fashion similar to that used by [38]. 

Our main conclusion is that even though ML models based on the 
first approach can be extremely accurate, they still struggle to pinpoint 
the best materials of a database, at least if they are challenged to do it 
efficiently. The second approach is an efficient alternative to the 
“traditional” one, but there are still limitations that bound the identifi
cation of the best materials. 

2. Methodology 

2.1. Computational algorithm 

The construction of accurate generic ML models requires large 
training sets since many regions of the feature space must be covered. 
However, if we are interested in the identification of the top-performing 
materials (for a given application), computational cost should be spent 
wisely in order their regions to be efficiently explored. Based on this 
idea, our algorithm dictates the way the simulations are performed, in 
such manner that the best structures are identified with the least 
possible computational effort. Our proposed approach is schematically 
presented in Fig. 1. 

As a first step, a small random subset of materials from a large 
database is selected and their adsorption uptakes are calculated (e.g. 
through GCMC simulations), forming an initial training set. The latter 
serves to build (train) an ML model which in turn makes predictions for 
all the materials in the database. Next, the training set is enriched by a 
number of top-performing structures as predicted by the ML model. The 
capacity determination, training set augmentation and capacity 

pacity in the whole data set

to the ML predicted top-100 materials

Fig. 1. Workflow of the proposed SC approach.  
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prediction steps are coupled in an iterative manner. This process con
tinues until all the top-performing structures as predicted by the ML 
model are already in the training set, where the procedure is said to have 
converged. 

The number of materials in the initial training set and the number of 
materials that are added at each iteration must be specified prior to the 
start of the iterative procedure. Information regarding performance 
variation with respect to the aforementioned parameters can be found 
on our previous work [40]. In this study, the same value was chosen for 
both parameters, namely 100. Ideally, the top-100 materials should be 
included in the converged training set. It is worth noting that the 
number of materials that are added in each iteration may be less than 
100, since some structures may be already added from previous 
iterations. 

2.2. Dataset and ML descriptors 

In this work, a labeled dataset sourced from 19 databases (including 
experimental ones such as the CoRE 2019 [5]), was employed. The 
dataset was developed and used by Siegel and his coworkers [39], and it 
is deposited at the HyMARC data hub [41]. This dataset was used 
throughout this work for the training and test phase of the various ML 
algorithms. It contains information for seven crystallographic features 
and four H2 usable capacities of 98,695 MOFs. 

The crystallographic properties include: density, gravimetric surface 
area, volumetric surface area, void fraction, pore volume, largest cavity 
diameter and pore limiting diameter. On the other hand, usable capac
ities include gravimetric and volumetric capacities under two operating 
conditions:  

1. pressure swing (PS), between 100 and 5 bar at 77 K  
2. temperature-pressure swing (TPS), between 77 K, 100 bar and 

160 K, 5 bar 

Gravimetric capacities are measured in wt% while volumetric ca
pacities in gL− 1. 

3. Results and discussion 

3.1. Evaluation of ML models 

An extensive study for the predictive performance of 15 different 
algorithms has been already performed by Ahmed et al. [39]. Here, for 
the sake of discussion we developed as well a number of predictive 
models using 4 different algorithms, namely, the decision trees (DT), 
random forest (RF), extremely randomized trees (ERT) and gradient 
boosted trees (GBT), as implemented in the scikit-learn package [42] 
(version 0.22.2). Notice that in the previous work was concluded that 
the ERT algorithm provides overall the most accurate predictions. The 
protocol we used for the model development is the following: we first 
create training datasets for the ML algorithms by randomly selecting a 
number of MOFs from the pool of the 98,695 materials. The size of the 
training set varies between 100 and 20,000 while the remaining mate
rials are used as test sets for the evaluation of the model performance. 
Predictions are made to the test data that were kept unknown to the ML 
algorithm during the training phase. In order to avoid any bias from the 
choice of the training data (in particular for small training sizes) we 
repeated the previous procedure 100 times using different random 
splits. The reported results correspond to the average of the 100 results 
obtained from this procedure. 

The results of all ML algorithms for the training set size 10,000 are 
tabulated in Table 1. It can be seen that the performances are very 
similar to those reported by Siegel, while the small differences should be 
assigned to the slightly different evaluation protocols and to the 
different training set sizes employed in the two studies. In any case, it is 
seen that the ML algorithms are more accurate for the UG instead of UV. 

Since the ERT algorithm exhibited excellent performance both in our 
study and that of [39], we choose this algorithm for comparison with our 
proposed method. From now on, the ERT models (for each target ca
pacity) will be referred to as the classical models. 

3.2. Application of SC approach 

We apply the SC approach using the dataset of 98,695 MOFs aiming 
to identify the 100 top-performing MOFs at the four different conditions 
previously specified. Fig. 2 illustrates how frequently the 100 top- 
performing MOFs were identified during the 100 runs performed. This 
frequency can be obtained by examining how many times these mate
rials were among the list of the top-100 predicted materials. In the ideal 
case, all top-100 MOFs should be present on the converged training set. 
It can be readily seen that the materials with the highest gravimetric 
working capacities under PS and TPS have been successfully identified 
by the SC algorithm in almost all runs. This behavior is not seen when 
the materials with the highest volumetric-based working capacities are 
examined. In this case it is observed that the frequency of appearance of 
these materials is significantly lower, especially at TPS conditions, while 
some of them were never observed. 

Table 2 summarizes the performance metrics of the SC approach, 
averaged across 100 runs. Similar to the behavior of the classical ML 
models, SC models’ accuracy is lower for the volumetric capacities 
compared to their gravimetric counterparts. This discrepancy in per
formance which is present on both approaches (classical and SC), will be 
discussed later on. It should be noted that although the SC based models 
are built such as to maximize efficiency (see Table 3 for their average 
training set size NSC

train), they are still able to achieve satisfactory gener
alization performance. In order to make comparisons between the 
classical and SC models on equal footing, the latter were constructed 
using the ERT algorithm as base model. 

3.3. Comparison of SC and traditional approach 

Regarding the gravimetric capacities, when both approaches are 
challenged to identify the top-100 structures, the SC model outperforms 
the classical one in terms of efficiency, since it identifies correctly the top- 
100 materials with less training samples. As shown in the top panel of  
Fig. 3, for the classical approach a training set of two orders of magni
tude larger (NERT

train≈ 3,000) is required compared to the SC approach (≈
300), for identifying roughly the same number of top-100 (NSC

100) mate
rials. This can be seen by projecting the crossing point of the blue and 

Table 1 
Performance metrics for various ML algorithms, trained on 10,000 structures. 
Metrics are calculated from predictions for the remaining 
98,695–10,000 = 88,695 structures. c.u., capacity units.  

UG at PS R2 MAE (c.u.) RMSE (c.u.) WAPE (%) 

DT 0.994 0.203 0.285 5.08 
GBT 0.996 0.157 0.219 3.93 
ERT 0.997 0.148 0.210 3.69 
RF 0.997 0.148 0.208 3.69 
UG at TPS     
DT 0.993 0.249 0.341 3.72 
GBT 0.995 0.201 0.271 3.00 
ERT 0.996 0.183 0.255 2.74 
RF 0.996 0.182 0.251 2.724 
UV at PS     
DT 0.965 1.429 2.07 6.42 
GBT 0.979 1.111 1.583 4.99 
ERT 0.981 1.056 1.541 4.74 
RF 0.981 1.049 1.511 4.71 
UV at TPS     
DT 0.922 2.014 2.965 4.99 
GBT 0.953 1.602 2.296 3.97 
ERT 0.958 1.469 2.165 3.64 
RF 0.959 1.467 2.146 3.63  
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black line onto the x-axis. Although these lines meet at a training set size 
≈ 20,000, a substantial number of the top-100 materials are identified 
by the classical model using smaller training set sizes. For this reason 

and the fact that at training set size of 3,000 the standard deviation has 
significantly decreased compared to smaller training sets, the afore
mentioned size is assigned as the “optimum” for the classical method, at 
both PS and TPS conditions. Furthermore, if the classical model is 
trained with the same amount of reference data as the SC model, it 
identifies only half of the top-100 materials on average and suffers from 
large standard deviation. That is, the identification of the top materials 
depends on the sampling while this is not the case for the SC model. The 
latter shows nearly zero standard deviation since all top-100 MOFs are 
included in the converged training set almost for all runs (see Fig. 2). In 
other words, the random sampling step required for the initialization of 
the iterative procedure, has no effect on the identification of the best 100 
structures. That is, the performance-directed selection of the training 
samples enables the efficient tracing of the best materials. 

When volumetric capacities are considered, both approaches fail to 
identify efficiently a substantial number of the best structures as 
depicted in the bottom panel of Fig. 3. In the case of classical models, the 
number of top-100 materials identified, particularly at TPS conditions, 
increases much slower as the training set size is increased compared to 
their gravimetric counterparts. On the other hand, the number of top- 
100 materials found by the SC models has significantly decreased, 
while their converged training set size is slightly raised in comparison 
with their gravimetric counterparts. Nevertheless, similar to the case of 
gravimetric capacities, classical models require a greater training set 
size—approximately 5,000 at PS (compared to 390 for SC) and 2,000 at 
TPS (compared to 419 for SC) at TPS—to reach the threshold defined 
byNSC

100. Moreover, for the same training size a smaller number of the 

Fig. 2. Number of appearances for the top-100 materials in the 100 runs performed (y-axis). The structures have been sorted from left to right (x-axis) in descending 
order (MOFs indexed as 1 and 100 represent the materials with the highest and lowest capacities, respectively). 

Table 2 
Performance metrics of the SC approach using the ERT algorithm as base model. 
Metrics are calculated from predictions for the whole database. c.u., capacity 
units.  

Capacity R2 MAE (c.u.) RMSE (c.u.) WAPE (%) 

UG at PS  0.986  0.269  0.417  6.712 
UG at TPS  0.987  0.303  0.459  4.529 
UV at PS  0.963  1.547  2.124  6.956 
UV at TPS  0.909  2.156  3.186  5.342  

Table 3 
NSC

100 denotes the number out of the top-100 MOFs that the SC model identifies 
while Ntrain

SC denotes the training set size of the latter. Ntrain
ERT stands for the training 

set size of the classical model required to reach the limit specified byNSC
100. When 

this is not possible, the “optimum” size is reported (see text). Results reported for 
each target and method are averaged across 100 runs.  

Capacity Nsc
100 Nsc

train NERT
train 

UG at PS 99 285 3000 
UG at TPS 99 298 3000 
UV at PS 19 369 5000 
UV at TPS 5 379 2000  
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top-100 structures is found on average compared to the SC models. 
However, this time the profits of SC models in terms of computational 
efficiency, especially at TPS conditions, are less pronounced. The results 
of the previous comparisons for each usable capacity are summarized in 
Table 3. 

The observation that for all target capacities the classical models 
need a greater training set size to achieve the threshold defined byNSC

100 
should be attributed to the different character that each method adopts. 
The SC approach prioritizes the identification of the top-performing 
materials and it achieves it by carefully selecting the training samples. 
On the other hand, the classical approach focuses on building a model 
that is able to generalize well for all the regions, including those for 
which the performance of the materials is mediocre or low. By trying to 
capture the structure-property relationship as accurately as possible, a 
considerable computational effort is wasted in modeling regions that are 
not of interest. 

3.4. Why methods fail for UV? 

To understand the discrepancy in performance between the gravi
metric and volumetric capacities we take a closer look on the feature 
space of MOFs. In order to visualize the seven-dimensional feature space 
(seven structural descriptors were used), we computed a reduced two- 
dimensional space using the t-distributed stochastic neighbour embed
ding (t-SNE) algorithm, as implemented in the scikit-learn package 

(version 0.22.2). The t-SNE is a statistical method for visualizing high- 
dimensional data by assigning each data point a location in a low- 
dimensional space (e.g. R2 or R3). The mapping is performed in such a 
way that similar points in the high-dimensional (original) space are 
represented by nearby points in the reduced space whereas dissimilar 
points are represented by distant points. 

Based on the t-SNE plots for the four different targets (Fig. 4), it 
becomes apparent that materials with high gravimetric capacities are 
localized in well-defined regions of the feature space. More specifically 
for both PS and TPS a narrow area of features contains 98 out of the top- 
100 MOFs, while a second area contains the remaining 2 (Fig. 5). The SC 
approach very efficiently locates these two regions enabling the iden
tification of the best materials in them. 

In contrast, materials with high volumetric capacities span different 
regions of the feature space, and especially at TPS conditions they 
appear almost everywhere. This in turn makes the identification of the 
top-performing materials a lot harder for the SC model since at each 
iteration the algorithm updates its predictions based on the top per
forming materials already included in the training set. If the neighbor
hoods of these materials in the feature space are not rich in the top- 
performing materials, as it is the case when the latter appear all over 
the feature space, then it is unlikely that they will be included in the 
training set during the next iteration. It should be noted that the SC 
models show no bias towards the top-100 materials they identify. As 
depicted in Fig. 5, there is no preferential exploration of the top- 

Fig. 3. Blue line represents the number of the top-100 materials (calculation is analogous to that of the SC approach, see text) identified by the classical model (y- 
axis) as function of the training set size (x-axis, logarithmic scale), while blue shaded area shows the respective standard deviation. The number of the top-100 
materials that the SC model identifies and its converged training set size are represented by the black and green line, respectively. Results for each approach are 
averaged across 100 runs. 
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performing regions and many of the top-100 materials were identified at 
least once. Although not shown here, visualization of specific runs re
veals that, in contrast to the case of UG, the results are very sensitive to 
the selection of the initial training set. 

It should be reminded that both the SC and the classical approach 
employ ML algorithms for their predictions, and as a result they are both 
characterized by limited extrapolation capabilities. In the case of SC 
approach, this means that the algorithm does not have a good sense of 
what the structure-property landscape looks like (outside the region 
spanned by the training samples), limiting its ability to better control the 
way the requested simulations are performed. In the case of classical 
approach, the aforementioned weakness is reflected on the lower ac
curacy of the models for UV capacities compared to UG. As shown in 
Fig. 4, the structure-capacity relationship is more complex in the case of 
UV compared to UG, as intense alterations in terms of capacity along the 
feature space are present. As such, larger training sets are required in 
order the structure-property relationship to be sufficiently captured by 
the classical models and the top-100 materials to be identified. 

Performance improvements for both approaches, especially for the 
case of volumetric capacities, can be attained by augmenting the set of 
descriptors with energy-based descriptors, i.e. descriptors that take into 
account host-guest interactions. This kind of descriptors is important 
when modelling gases with non-negligible electrostatic interaction such 
as CO2 and H2, since it allows ML algorithms to extract more complex 
structure-property relationships, which in turn can lead to ML models of 
higher generalization ability. 

4. Conclusions 

Two approaches were examined, namely a traditional one that builds 
a general predictive model using random samples and a self-consistent 
approach where the samples are chosen aiming to improve predictions 
in the region of interest. 

Surprisingly, while accurate traditional ML models were con
structed, when the latter were asked to identify the most promising 
materials, their high accuracy—according to various statistical metri
cs—did not translated to fruitful predictions in all cases. While their 
results were satisfactory for materials with high gravimetric capacities, 
this was not the case for the volumetric ones. Although this behavior 
became apparent thanks to the large number of available data that 
allowed us for an extensive evaluation of both approaches, this will not 
be possible when only a limited amount of data is available. Judging an 
ML model based solely on its statistical accuracy may be misleading if we are 
interested in tracing the best materials of a database. In our previous work 
for methane [40] while ML predictive models of lower accuracy were 
constructed (R2 = 0.940 − 0.983 depending on the materials and the 
thermodynamic conditions examined compared to the R2 = 0.959 −

0.997 in this work) more than 70 out of the top-100 materials were 
correctly identified by the SC procedure. 

Comparison of the classical and SC approach, revealed that in all 
cases the latter was more efficient. Notably, the SC approach required a 
two orders of magnitude smaller training set compared to the classical 
one in order to identify the best materials in terms of gravimetric per
formance, at both PS and TPS conditions. Although the profits of the SC 

Fig. 4. A two-dimensional representation of the original seven-dimensional feature space. Each point corresponds to a structure on the dataset with the color bar 
denoting their usable capacities. 
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method in terms of computational efficiency were not that prominent 
when volumetric capacities were examined, still our method was able to 
set a lower bound in terms of computational cost. The performance- 
directed selection of the training samples renders the SC method more 
efficient if we prioritize the discovery of novel materials. 
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