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ABSTRACT: In the past decade, high-throughput computational studies of
materials have increased significantly mainly due to advances in computer
capabilities and have attracted a great deal of interest. In the field of metal−
organic frameworks (MOFs), over a million hypothetical MOFs have been
designed in silico, yet only a small fraction of these have been synthesized. For
validating the computational-hypothetical results and accelerating the progress in
the field, there is a pressing need for distinguishing MOFs that are more likely to
be synthesized for real-life applications. This study presents a comprehensive
investigation into the synthesizability likelihood of MOFs, utilizing a novel
computational approach based on the disparities in energy and geometry between
the linker conformation within the MOF structure and its isolated, free-gas state
since both of these have been proven to be critical factors influencing MOF
synthesis. Our user-friendly tool streamlines synthesizability evaluation, requiring
minimal expertise in computational chemistry. By deconstructing over 40,000 MOFs from databases, including QMOF, CoRE MOF,
and ToBaCCo, we analyze key parameters defining the linker strain within the MOF unit cell. Our results indicate that QMOF and
CoRE MOF contain more promising candidates for synthesis, while ToBaCCo exhibits a relatively poor synthesizability likelihood
due to unoptimized materials. Through extensive analysis, we identify optimal linker candidates for highly synthesizable MOFs.
Consistent trends in energy distribution across databases that are confirmed by high Pearson and Spearman coefficients suggest the
potential for omitting optimization calculations, significantly reducing computational costs. This study underscores the importance
of linker deformation and energy disparities and enhances our understanding of synthetic accessibility in MOF research, offering
valuable insights for future advancements in the field.

■ INTRODUCTION
Reticular chemistry, the scientific approach of combining well-
defined molecular building blocks in terms of size, shape, and
connectivity to create extended, open-framework structures,
provides chemists and materials scientists a versatile toolkit for
the development of advanced materials suitable for addressing
various challenges.1 Metal−organic frameworks (MOFs) are a
great example of the successful implementation of reticular
chemistry and, therefore, have captured significant interest in
targeting tailor-made materials. MOFs represent a distinctive
class of nanoporous materials characterized by precisely
defined pore shapes, sizes, and chemistry. These materials
exhibit exceptional physical properties, including extremely
high porosity (up to 90% free volume), low density, and a large
surface area. Their construction is modular, achieved through
the cooperative self-assembly of inorganic units (comprising
metal ions or clusters) and organic linkers, resulting in diverse
framework topologies and creating a vast combinatorial design
space. The strategic selection of inorganic building blocks and
organic linkers allows for the tailored design of MOFs
optimized for specific environmental, health, and energy
applications.2−6 Despite this potential, the central challenge

lies in pinpointing the most optimal and feasible combination
of MOF building blocks and their configurations within this
practically limitless design space.

Despite the promise of metal−organic frameworks in various
applications, their experimental study poses considerable
challenges. Traditional methods for synthesizing MOFs often
require intricate control over reaction conditions and
necessitate time-consuming trial-and-error processes. The
sheer complexity and diversity of potential MOF structures
exacerbate these challenges, making it difficult to predict the
synthesizability of certain MOFs, their optimal synthesis
routes, and finally the measurement of the desired properties.

Recognizing these difficulties, there is a compelling need for
advanced in silico tools. Computational approaches that
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involve ab initio calculations, classical simulations, and
machine learning offer a systematic and efficient means to
explore the expansive MOF design space and accelerate the
discovery of new and desirable MOFs. Databases containing an
immense number of metal−organic frameworks, potentially
reaching into the trillions, can be studied in order to aid the
scientific community in identifying desired materials within a
fraction of the time needed for experimental analysis.

While numerous studies employing high-throughput com-
putational screening (HTCS) methods have gained consid-
erable attention, they often overlook a crucial parameter: the
synthesizability of the proposed materials. Although these
investigations excel in identifying top-performing candidates
for various applications within expansive databases, they
commonly neglect a fundamental aspect that will lead to the
implementation of these materials in the real world.

A noteworthy example is the computation-ready, exper-
imental (CoRE) MOF database.7,8 Chung et al. mention that
their main target is to allow a HTCS screening of numerous
materials, but the optimal ones found need to be further
analyzed for stability. They propose performing geometry
optimization calculations and subsequently recomputing the
desired properties. Many studies employ computational tools
to scan through the CoRE MOF database, but they do not
proceed to further support their findings.9−13 Simon et al.9

advocate for leveraging a materials genome approach to
expedite the discovery of high-performance adsorbent
materials, particularly focusing on metal−organic frameworks
for natural gas storage in vehicles. They compiled methane
uptake data from over 650,000 materials, including 5109 from
the CoRE MOF database, but they neglected to study the
synthesizability likelihood of the best-performing ones.
Similarly, He et al.13 developed a strategy for screening high-
performance bio-metal−organic frameworks (bio-MOFs) for
oxygen (O2) separation from air, utilizing machine learning
and molecular simulation techniques. They selected desired
bio-MOFs from MOF databases using a binary decision tree
method, characterized them using 15 descriptors, and
employed a Random Forest (RF) algorithm to establish
mapping between descriptors and target properties obtained
from Grand canonical Monte Carlo (GCMC) simulations.
Through high-throughput screening, they identified high-
performance bio-MOFs for O2/N2 adsorption separation.
However, they neglected to assess the synthesis ability of the
identified high-performance bio-MOFs, focusing solely on
their separation efficiency.

Numerous other studies that utilize other big databases
acknowledge the fact that they do not consider the practical
feasibility of top-performing materials synthesis. Lee et al.14

propose a systematic strategy utilizing machine learning and
evolutionary algorithms to sift through an extensive set of over
100 trillion possible metal−organic frameworks. This strategy
addresses the limitations of traditional computational screening
approaches, which often employ a brute-force strategy and are
restricted to an initial set of materials. Their approach identifies
964 MOFs with methane working capacities exceeding 200
cm3/cm3, including 96 surpassing the world record of 208
cm3/cm3. Notably, the study acknowledges the challenges of
experimental synthesis and omits top-performing MOFs from
consideration due to perceived difficulty, emphasizing the need
for a more practical approach to material discovery. In another
study by Ahmed and Siegel15 machine learning is leveraged to
predict hydrogen capacities for a diverse set of 918,734 MOFs

sourced from 19 databases. Using only 7 structural features, the
model identifies 8282 MOFs with the potential to surpass
state-of-the-art materials, characterized by low densities, high
surface areas, void fractions, and pore volumes. However, the
study concludes that limitations exist, particularly in the
synthesis feasibility of some high-capacity MOFs, emphasizing
the challenges of experimental realization and the potential for
future advancements in synthesis techniques to overcome
these barriers.

One way to make traditional HTCS more effective in finding
new MOFs is to implement a rapid and easy-to-use protocol to
predict the likelihood of MOF synthesizability. Even though
recent experiments16−18 have provided useful insights into
MOF formation, it is still unclear what exactly determines the
outcome of the experimental synthesis.

The ability to bridge this gap between theoretical predictions
and experimental realization is paramount for ensuring the
viability and applicability of metal−organic frameworks in
practical scenarios. Presently, decisions regarding the synthesis
of top-performing candidates following HTCS studies rely on
chemical intuition. Due to the expense of exploratory
experiments, those efforts are typically directed toward
MOFs that resemble previously synthesized ones. This practice
may overlook truly exceptional candidates, impeding the
effectiveness of MOF discovery and limiting the exploration
of novel regions within the MOF space. This observation is
further supported by the fact that approximately 50% of over
40,000 published articles regarding MOFs concentrate on just
30 cases as mentioned by Anderson and Goḿez-Gualdroń.19

In addition, such an evaluation tool could function as an
initial screening tool in HTCS investigations, enabling the
exclusion of MOFs with a poor synthesis probability. This
targeted strategy ensures efficient allocation of computational
resources toward MOFs with higher potential for synthesis
post-HTCS. The adoption of a synthetic likelihood criterion
would allow reduction of the database, facilitating simulations
with certain computational constraints.

Nevertheless, there is a noteworthy lack of studies that
specifically concentrate on assessing the likelihood of
synthesizability of porous materials. Jablonka et al.’s review20

covers principles of big-data science, including the selection of
training sets, representation of materials in feature space,
learning architectures, and evaluation strategies. Additionally, it
explores the application of machine learning in various aspects
of porous materials, such as stability and synthesis. Regarding
the latter, a limited number of studies, focusing specifically on
zeolites, are mentioned, revealing the relatively sparse research
conducted in this area. According to this review, early works
proposed that low framework energies are the distinguishing
criterion for a high likelihood of synthesizability of zeolites, but
this was quickly rejected with the discovery of high-energy
ones. It was replaced by a “flexibility window”, which was later
shown to be unreliable and replaced with criteria that focus on
local interatomic distances. Perez et al.21 conducted a
screening study that used a library of such energetic and
structural criteria. Their work concludes by proposing the use
of the overlap between the distribution of descriptors of
experimental materials and those generated in silico as a metric
to assess the feasibility of the materials. Nonetheless, this
approach is too complex for individual handling and expediting
the process, requiring expertise from a computational specialist
and a plethora of experimental data. In another study,
Anderson et al. introduced a crystallographic net rescaling

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01298
J. Chem. Inf. Model. 2024, 64, 8193−8200

8194

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01298?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


algorithm to the topologically based crystal constructor code,
ToBaCCo 3.0, facilitating the automated construction of
MOFs with varying topologies.19 By computationally “synthe-
sizing” isomorphic MOFs, the researchers demonstrated the
significant influence of crystal topology on adsorption and
mechanical properties. They evaluated the mechanical stability
of a material through the Born stability criterion, highlighting
the importance of the latter in identifying realistic targets for
synthesis. Nevertheless, it is essential to note that calculating
the elastic constants computationally, as is conventionally done
with LAMMPS, involves intensive work. The same group
conducted large-scale calculations of MOFs’ free energies on a
diverse database of 8500 MOFs, recommending the use of
Frenkel−Ladd (FL) path thermodynamic integration coupled
with UFF4MOF for accurate estimation.22 They identified two
potential criteria for identifying synthetically likely MOFs: a
linear fit of free energies to the metal/linker atom ratio and
selecting the MOF with the lowest-predicted free energy
within the isomorphic series, highlighting the importance of
thermodynamic stability in determining synthetic accessibility.
However, this method does not provide a user-friendly
program and necessitates extensive molecular dynamics
simulations and expertise. A solid foundation and proficiency
in computational chemistry are required to cope with the
complexities of the calculations and ensure accurate and
meaningful results.

In response, we propose that the disparities in energy and
geometry between the organic linker conformation within the
MOF structure and the conformation observed in its isolated,
free-gas state are crucial factors in MOF synthesis as they
represent the energetic barriers that must be overcome for
successful formation, influencing the overall synthesizability of
MOFs. It is noted that the selection of the organic linker in
MOF synthesis is of paramount importance because the vast
majority directs the in situ formation of the inorganic building
blocks, and for this reason reticular synthesis approaches start
with the selection of the linker in terms of size, shape, and
number of coordination.23 Our approach requires minimal
expertise and knowledge in computational chemistry and

streamlines the process of synthesizability evaluation. The
devised workflow involves the extraction of the MOF’s organic
linker, followed by an optimization procedure of the ligand to
attain its free conformation energy. We assess the synthesiz-
ability likelihood by analyzing geometric changes and the
corresponding energy differences resulting from the optimiza-
tion process. In the following sections, in addition to
describing our code, we elaborate on the utilization of our
model in distinctive cases. We present an extensive study on
three databases, namely, Quantum MOF (QMOF),24 CoRE
MOF,7 and ToBaCCo database25 to showcase the validity of
the tool and its capabilities to handle big databases within a
short time frame. The three aforementioned databases were
strategically selected, as their generation followed different
rules and methodologies. ToBaCCo is a hypothetical database
in contrast to QMOF and CoRE MOF both containing
experimental instances. In addition, QMOF’s entries are
optimized, leading to the expectation that this database
would contain candidates with easier synthesis and suitable
for further experimental studies.

■ METHODOLOGY
The initial step in the synthesizability evaluation involves the
creation of a supercell, accomplished by multiplying the unit
cell’s dimensions by a factor of 2. This expansion ensures that
the MOF’s cell under investigation encompasses a complete
linker, avoiding partial representations common in many unit
cells due to symmetry operations. However, for larger CIF files
that already meet this condition, the supercell creation is
redundant. Therefore, we introduced an optional feature to
prevent the creation of a supercell if all cell dimensions exceed
a user-specified threshold, defined in Angstroms. This
threshold can be set to any positive number that the user
considers appropriate for their use case and is used to
streamline the process and reduce the computational time.
This crucial procedure is seamlessly executed using the
pymatgen26 library. It is an open-source Python library
renowned for its robustness in materials analysis.

Figure 1. MOFSynth workflow: The first step involves linker extraction followed by optimization. The final step consists of comparing the original
and optimized structures.
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The subsequent step in the synthesizability evaluation, as
seen in Figure 1, involves a fragmentation procedure, where
the linkers of the previously created supercell are extracted into
a separate file. To execute this task, the MOFid module is
employed.27 Leveraging this algorithm enables the extraction
of all linkers in CIF file format. This comprehensive extraction
proves to be invaluable for the subsequent optimization stage
and the correct representation of the linker.

In the next step, the above-mentioned CIF file undergoes
parsing through Open Babel.28 Through utilization of the
latter, the outcome is an XYZ file containing the coordinates of
a single linker representative of the metal−organic framework
under examination.

In the fourth step, we employed TURBOMOLE29 for both a
single-point calculation and an energy optimization procedure.
The calculations utilized the Universal Force Field (UFF),30

with the convergence criteria set at 10−7 atomic units and 10−4

Angstroms for energy and geometry cycles, respectively. The
maximum displacement for a coordinate in a relax step was set
to 0.30 atomic units, nqeq is zero so the partial charges were
calculated only in the first cycle, and iterm was set to 111111 in
order for the bond, angle, torsion, inversion, non-bonded van
der Waals, and non-bonded electrostatic terms to be
calculated. Finally, if the norm of the gradient is greater than
100, a deepest-descent step will be done, and if it is smaller
than 10−3, no line-search step will be done after the Newton
step. The outcome of this step yields two distinct
conformations: one representing the initial state of the linker
within the metal−organic framework and the other showcasing
the optimized configuration. These conformations provide
valuable insights into the structural changes and energy surface
during the optimization process, contributing essential data for
the overall assessment of the synthesizability.

The calculation of energy and geometrical changes was done
in the last phase of our synthesizability assessment. Initially,
linkers were grouped based on their SMILES code, which was
extracted using RDKit.31 This was followed by a comparison of
each group’s optimized energies and retention of the
conformation with the lowest-optimized energy. The energy
difference for each linker was determined by computing the
disparity in its single-point energy and the lowest-optimization
energy of its group. Furthermore, the quantification of
geometric deformation was quantified with the root-mean-
square deviation (RMSD). Regarding the latter, to ensure
accuracy, the two monomers was subject to a recentering
process and were rotated to achieve the true minimal RMSD.
This step is pivotal because a straightforward calculation of the
RMSD may yield irregular values. The RMSD computation
employed the Kabsch algorithm,32 renowned for its efficacy in
determining the optimal rotation matrix that minimizes the
root-mean-square deviation between two sets of Cartesian
coordinates. The utilization of an open-source program33

ensured the precision and reliability of these calculations.
As part of this project, we are releasing an open-source code

on GitHub (https://github.com/frudakis-research-group/
mofsynth), which includes an implementation of the
MOFSynth procedure analyzed above. The use of open-source
software for the MOFSynth scheme is advantageous. Users can
inspect the source code of the underlying algorithms and the
repositories that facilitate distribution of the code to the
research community. In addition, we provide our tool in a web
interface (https://mofsynth.website), which allows researchers

with minimal computational knowledge to use our evaluation
tool and extract information on MOFs of their choice.

■ RESULTS AND DISCUSSION
Our primary objective was to evaluate the performance of our
code across a variety of databases with distinct characteristics
and compositions that would allow us to assess the robustness
and versatility of our methodology. We utilized the quantum
MOF database,24 the computation-ready experimental metal−
organic framework7 database, and the ToBaCCo database25 in
order to compute the synthesizability likelihood of the
contained entries. QMOF is a publicly available database of
computed quantum-chemical properties for more than 20,000
experimentally synthesized MOFs. To our knowledge, this is
one of the most accurate and notable databases in the
literature. The CoRE MOF database incorporates over 14,000
porous, three-dimensional metal−organic framework struc-
tures. The updated version encompasses additional contribu-
tions from CoRE MOF users, data from the Cambridge
Structural Database, and a Web of Science search. We studied
the all solvent removed subset, which includes 10.143 CIFs
with both free and bound solvents removed. Additionally, the
ToBaCCo database includes 13,512 hypothetical MOFs of 41
distinct topologies and is extensively explored for numerous
applications.

As evident from Figure 2, our code effectively parsed the vast
majority of instances. Specifically, the protocol was successfully

employed for 17,910 MOFs out of the initial 20375 CIFs
provided for QMOF, for 9608 instances originating from the
CoRE MOF, and for 12287 instances of the ToBaCCO
database. The remaining instances encountered issues during
the fragmentation procedure and faced challenges in
identifying the SMILES code. Our workflow shows great
robustness and adaptability, showcasing its ability to analyze
various types of CIFs with the majority of instances being
successfully processed.

Upon analyzing the results, very few instances exhibited
negative linker single-point energy, which is inconsistent with
classical energy calculations. Furthermore, a few MOFs
displayed exceedingly high energies (>500 kcal/mol), prompt-
ing their exclusion from subsequent visualizations for clarity.

Figure 3 depicts the normalized root-mean-squared displace-
ment (RMSD) along with the normalized energy difference
(ΔE) of each database’s instances. A color gradient is applied

Figure 2. Success and failure rates in fragmentation and SMILES
procedure.
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to the scatter plots, indicating the distance of each instance
from the (0,0) point. This coloring scheme serves as a metric
for assessing the ease of synthesizing each material. Instances
farther from the origin are less likely to be synthesized. Upon
initial observation, as evidenced by the colormap range, CIFs
of the QMOF database have on average lower-energy
differences and are closer to the origin of the axis. The
colormap ranges from 0 to 1 for the QMOF, while for the
CoRE MOF and ToBaCCo, it spans from 0 to 1.2.

An important distinction between the three databases under
study is revealed in Figure 4, which shows the energy

percentage distribution plot along with a kernel-density
estimate plot. In the QMOF, the majority of cases are
concentrated below 100 kcal/mol, with a peak at around 40
kcal/mol. On the contrary, the majority of MOFs of the CoRE
MOF are clustered above the 100 kcal/mol mark, with a peak
distribution around 85 kcal/mol. This observation suggests
that QMOF contains more energetically stable instances,
aligning with our initial expectations based on the inherent
characteristics of the two databases. On the other hand,
ToBaCCo’s distribution depicts slight peaks with the larger
part of the database being evenly distributed along the energy
axis up to the 250 kcal/mol mark where a gradual decline
begins. This is a significant result, considering that the
ToBaCCo database consists of hypothetical materials, as
mentioned above. These materials are not optimized and
may possess atypical properties, such as oversized bonds,
which could impact their synthesizability.

Regarding the root-mean-square-deviation-distribution plot,
which is depicted in Figure 5, similar trends are observed. We
must note that for visualization purposes we have excluded
RMSD values greater than 2 Å. Interestingly, both QMOF and

CoRE MOF display a peak at small RMSD values, although
QMOF’s peak is slightly lower. Consequently, QMOF tends to
have a slightly higher number of MOFs in the following RMSD
regions. However, this trend converges quickly at around 0.7
Å, where both databases exhibit comparable distributions once
again. The distribution of hypothetical MOFs, once again,
lacks a distinctive peak and showcases an even spread along the
RMSD axis. This finding further supports our initial expect-
ations that the hypothetical MOF database would comprise
MOFs inclined toward greater deformation during their unit
cell assembly.

In Figure 6, the distributions of the linker’s single-point (SP)
and optimized (OPT) energies are depicted, revealing a
comparable trend between the two. In both distributions, the
QMOF and CoRE MOF show a higher concentration of
materials in the low-energy region and experience a rapid
decline in the higher-energy regions. On the other hand,
TobBaCCo exhibits an even distribution pattern characterized
by two minor peaks. The similarity between the two sets of
data can be quantified by the Pearson (R) and Spearman (S)
correlation coefficients. An R-value close to 1 indicates a strong
linear correlation between SP and OPT energies, and an S-
value close to 1 suggests that the ordering of MOFs by the two
energies would yield similar results. In Figure 7, we see three
distinguished scatter plots for all databases that show the SP vs
OPT energy along with the point density. The linear relation is
evident, especially through examination of the latter plot. The
calculated Pearson and Spearman coefficients shown in Table 1
further support the argument that the two properties have a
strong correlation. This implies that the linker-optimized
energy could be estimated using its single-point energy,
reducing the computational cost significantly.

Figure 3. Scatter plot of normalized RMSD versus normalized ΔE values.

Figure 4. Percentage distribution of ΔE (kcal/mol).

Figure 5. Percentage distribution of the root-mean-square deviation
(Å).
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By extracting data on linker concentration within specific
energy ranges, valuable insights can be obtained regarding the
most favorable linkers for stable MOF creation, enabling a
reverse-engineering process. Focusing on the experimental
databases reveals that the first distinct peak in the energy
distribution for the QMOF and CoRE MOF is below the 50
kcal/mol mark. The most frequent linkers found in this region
are depicted in Figure 8. In QMOF, two bipyridines emerge as
the dominant linkers, whereas CoRE MOF predominantly
features smaller ones, namely, one ethyne and one cyanide.
QMOF’s bulkier linkers have lower-energy differences than
CoRE’s, which can be attributed to the optimization process.
Had they not been optimized, they would have lain in energy
regions exceeding 120 kcal/mol, as observed by CoRE’s
unoptimized MOF linkers which are formed by just a few
atoms in these high-energy regions. QMOF’s unoptimized bulk
linkers would have appeared impractical for synthesis. This
underscores the pivotal role of optimization, which emerges as
a crucial factor in enabling the realization of these MOFs.

Regarding the hypothetical MOF database, we observe that the
most common linkers in low-energy regions are benzene-1-
carboxylate, 4-ethynecarboxylate, and ethyne dicarboxylate,
indicating their potential as prime candidates for synthesizable
MOFs. This workflow not only aids in identifying optimal
linkers but also serves as a valuable tool for exploring the vast
linker space to discern those that tend to generate
synthesizable MOFs more frequently, thereby expanding the
variety of synthesizable MOFs.

■ CONCLUSIONS
In this study, we present a thorough exploration of the
synthesizability likelihood in metal−organic framework data-
bases such as QMOF, CoRE MOF, and ToBaCCo. We also
developed a user-friendly tool that streamlines the computa-
tional process, offering accessibility to researchers with varying
levels of computational expertise. Our findings highlight the
importance of linker deformation in MOF synthesis, as it
represents the energetic barriers that must be overcome for
successful synthesis. We applied our methodology to over
40,000 MOFs, deconstructing them to analyze key parameters
defining the linker strain within the MOF unit cell. We
calculated single-point and optimization energies as well as
root-mean-square deviation. Our results indicate that QMOF
and CoRE MOF contain the most promising candidates for
MOF synthesis, while ToBaCCo, composed of unoptimized
materials, shows relatively poor synthesizability likelihood.

Figure 6. Percentage distribution of single-point energy (left) and optimized energy (right) in atomic units.

Figure 7. Scatter plot of single-point energies vs optimized energies of MOF linkers in atomic units.

Table 1. Pearson and Spearman Coefficient Values for the
Three Databases under Study

Correlation Pearson Spearman

QMOF 0.90 0.89
CoRE MOF 0.87 0.85
ToBaCCo 0.95 0.92
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Both findings align with our initial hypothesis based on the
construction parameters of each database, which indicate that
the experimental MOFs, particularly those optimized, would
exhibit a higher synthesizability score. In addition, a reverse-
engineering approach was employed by identifying optimal
linker candidates that are frequently present among the best-
performing MOFs, providing valuable guidance for exper-
imental endeavors. Analysis of energy-distribution trends
revealed a consistent pattern across databases, supported by
high Pearson and Spearman coefficients exceeding 0.85. This
suggests the possibility of omitting optimization calculations
and reducing computational costs significantly. The computa-
tional tool developed in this study opens several promising
avenues for future research in the field of metal−organic
frameworks. By providing a reliable method for predicting the
synthesizability of MOFs, researchers can more efficiently
screen large databases of hypothetical MOFs, prioritizing those
with a higher likelihood of successful synthesis. This approach
significantly reduces the time and cost associated with
experimental validation, making it a valuable asset for both
academic research and industrial applications. The data
generated from our tool can be used to train machine learning
models that predict the MOF synthesizability with even greater
accuracy. By leveraging artificial intelligence, we can enhance
our predictive capabilities, making it possible to explore vast
regions of the MOF space that is currently underexplored.
While this study focuses on MOFs, the principles and
computational methods developed here could be extended to
other types of framework materials, such as covalent organic
frameworks (COFs) and zeolitic imidazolate frameworks
(ZIFs). This would allow for a broader application of the
tool in the discovery of new materials with desirable properties.
In conclusion, our comprehensive analysis of thousands of
MOFs underscores the importance of linker deformation and
energy disparities in understanding synthetic accessibility,
offering valuable insights for advancing MOF research.
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