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Thanks to their unique properties such as ultra high porosity and surface area, metal-organic 
frameworks (MOFs) are highly regarded materials for gas adsorption applications. However, their 
combinatorial nature results in a vast chemical space, precluding its exploration with traditional 
techniques. Recently, machine learning (ML) pipelines have been established as the go-to method 
for large scale screening by means of predictive models. These are typically built in a descriptor-
based manner, meaning that the structure must be first coarse-grained into a 1D fingerprint before 
it is fed to the ML algorithm. As such, the latter can not fully exploit the 3D structural information, 
potentially resulting in a model of lower quality. In this work, we propose a descriptor-free framework 
called “AIdsorb”, which can directly process raw structural information for predicting gas adsorption 
properties. To accomplish that, the structure is first treated as a point cloud and then passed to a 
deep learning algorithm suitable for point cloud analysis. As a proof of concept, AIdsorb is applied for 
predicting CO2 uptake in MOFs, outperforming a conventional pipeline that uses geometric descriptors 
as input. Additionally, to evaluate the transferability of the proposed framework to different host-
guest systems, CH4 uptake in COFs is examined. Since AIdsorb bases its roots on raw structural 
information, its applicability extends to all fields of material science.

Metal-organic frameworks (MOFs), the first and most prominent “offspring” of reticular chemistry1,2, are 
admittedly one if not, the most intriguing materials of the 21st century. Being essentially a combination of metal 
ions/clusters and organic linkers3, MOFs equip researchers with a vast chemical playground for materials design, 
allowing them to tackle problems in a wide range of fields, spanning from gas storage and separation4 to drug 
delivery5. Carbon capture is a prime example, where MOF-based sorbents have been deemed as green, low-cost 
and energy efficient solutions.

Owning to their unprecedented chemical and structural tunability, large databases of either experimental6,7 
or hypothetical8–10 MOFs have already been developed, and more are expected to emerge in the coming years11. 
Searching for the most promising candidates across these catalogs is undoubtedly a non-trivial task. Obviously, 
experimentally synthesizing and characterizing each and every one of them is infeasible. Performance evaluation 
by means of molecular simulations provides a more efficient alternative, dramatically decreasing the time 
required to assess a single material. Nonetheless, exploring the MOFs space via brute-force computational 
screening is impractical, given its immensity. How then we harness this materials space?

In the era of big data, a subfield of artificial intelligence called machine learning (ML) comes to the rescue, 
enabling the efficient identification of promising materials through predictive models12–15. Building the latter 
amounts to training a (supervised) ML algorithm with a set of inputs and outputs. In ML jargon, inputs 
and outputs are known as descriptors and labels, respectively. Within our context, the descriptors provide a 
mathematical description of the structure, while the output is the property of interest.

The performance of ML models depends to a large extent on the way we select to mathematically describe a 
material. In other words, the amount of information that is “injected” into the descriptors can make the difference 
between a high-performing and a baseline model. Regarding gas adsorption in MOFs, various types of descriptors 
have been proposed with geometric ones being the first to be introduced16 and widely used17–20. These descriptors 
typically include various textural properties such as void fraction and surface area, collectively summarizing 
the pore geometry of the framework. Chemical descriptors21–24 are another type of MOF descriptors, aiming 
to capture the chemical character of the framework. For example, Fanourgakis et. al25 introduced the number 
density of atom types, a standardized count (divided by the unit cell volume) of the atom types in the unit 
cell. Atom types provide information about the hybridization and connectivity of the MOF atoms, effectively 
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describing the chemistry of the framework. Energy-based descriptors26–30, i.e. descriptors that take into account 
host-guest interactions, have also been developed. For instance, Bucior et al.31 fingerprinted the potential energy 
landscape of H2-MOF interactions through the construction of sorbate-sorbent energy histograms.

Irrespective of their type, descriptors inevitably introduce the following problems into a ML pipeline. 

	1.	� Need to be designed, a process which requires a significant amount of human effort and domain knowledge.
	2.	� Require calculation, adding an extra computational overhead to the pipeline and as such, slowing down the 

deployment of the model for large scale screening.
	3.	� More importantly, they may lead to significant information loss and hence decrease model’s performance, as a 

3D object, the structure, is coarse-grained into a 1D (or 2D) fingerprint.In reticular chemistry and of course 
chemistry, “every Angstrom matters”, meaning that the ML algorithm should ideally be aware of the exact ar-
rangement of atoms in 3D space. To put it differently, if our aim is to model the underlying structure-property 
relationship, why provide the algorithm with a description of the structure and not the structure itself?

 In this work we present “AIdsorb” (Fig. 1), a descriptor-free framework that can directly consume raw structural 
information to predict gas adsorption properties. To achieve this, we: 

	1.	� Treat the structure as a point cloud
	2.	� Choose a suitable algorithm for learning on point cloudsA point cloud, being essentially a set of 3D points and 

associated information, provides a natural and lossless way to mathematically represent a structure. In our 
case, the 3D points correspond to atomic positions, while the associated information corresponds to atomic 
numbers and optionally extra chemical information. We refer to such a point cloud as “molecular point cloud”. 
Extra information added to each point can be in the form of atomic properties, such as the electronegativity 
and ionization energy of the atom, or properties summarizing the local environment of the atom, e.g. the av-
erage electronegativity of the first coordination sphere. In this work only atomic properties were considered, 
namely electronegativity, van der Waals radius and dipole polarizability, which are collectively denoted as F . 
More details can be found on Section 1 of Supplementary Information (SI).

With regards to the choice of ML algorithm, we turn our attention to geometric deep learning (DL)32, the branch 
of DL that deals with unstructured data, such as graphs and point clouds. For this study, the algorithm of choice 
is a lightweight version of PointNet33 (see Fig. 1 and SI for more details), a simple yet robust DL architecture for 
point cloud processing.

Although DL algorithms are notorious for being data hungry, training such as algorithms nowadays and 
expecting them to generalize well—at least within the field of reticular chemistry—should be reasonable, given 
the vast amount of data currently available34. Thanks to the ability of DL algorithms to perform automatic 

Fig. 1.  (Top) Generalized framework to predict gas adsorption properties by using a molecular point cloud 
as input. (Bottom) The lightweight version of PointNet architecture used in this work. Each point in the cloud 
is processed identically and independently by the feature extraction layers (shared MLPs). After passing these 
layers, each point has been transformed from being represented with 3 + C  features into 1024 features. Then, a 
max pooling layer aggregates the per-point features into a global “signature” for the molecular point cloud. The 
latter is fed into a MLP that generates predictions for the property(ies) interest (hereon gas uptake). Numbers 
in parentheses are layer sizes. MLP, multi-layer perceptron.

 

Scientific Reports |        (2024) 14:27360 2| https://doi.org/10.1038/s41598-024-76319-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


feature extraction from raw data, combining a DL architecture with molecular point clouds introduces a versatile 
paradigm for data-driven material science, bypassing the obstacles of manually crafted descriptors.

The ability of the proposed approach to directly process raw structural information, allows it to be applied to 
any host-guest system for modeling any property of interest. As a proof of concept, AIdsorb is applied on MOFs 
for predicting CO2 uptake. Additionally, we showcase its transferability by examining CH4 uptake on COFs. In 
both cases, the suggested pipeline is compared with conventional ones that use geometric descriptors as input.

Results and discussion
In order to evaluate our pipeline’s performance, PointNet is trained (see Section 3.3 of SI for training details) 
and tested on the University of Ottawa database9, for predicting CO2 uptake at 298K and 0.15 bar. For the sake 
of comparison, a conventional model is built with the random forest (RF) algorithm35, serving as our baseline. 
For both pipelines the same random subsets of 291 984 and 24 331 materials were used as training and test sets, 
respectively. As it can be seen from the parity plots of Fig. 2, the PointNet model achieves a R2 value of 0.897, 
outperforming the conventional one, which shows a R2 value of 0.753. This performance gap of approximately 
20% highlights the importance of preserving and not coarse-graining raw structural information.

Furthermore, the transferability of the approach is demonstrated by applying AIdsorb to the COFs database 
created by Mercado et. al36, for predicting CH4 uptake at 298K and 5.8 bar. In this case, PointNet is trained and 
tested with a random subset of 59 363 and 6984 materials, respectively. As shown in Fig. S2, the predictions 
of the resulting model are in great agreement with the ground truth values (R2 = 0.966). Again, the PointNet 
model performs better than the conventional one (R2 = 0.946), which was trained and tested on the same data 
as the former. It should be noted that the performance gap in this case is less pronounced compared to the CO2 
case. This should be attributed to the fact that geometric descriptors are sufficient when modeling gases with 
negligible electrostatic interactions, such as CH4

16,37 or Xe
18. That is, the coarse-grained structural information 

that geometric descriptors encode suffices to accurately predict CH4 uptake but is not enough when predicting 
CO2 uptake.

To understand whether the addition of chemical information into point clouds affects the predictive accuracy 
of PointNet, the latter was trained with different types of point clouds for both MOFs-CO2 and COFs-CH4 cases. 
Specifically, PointNet was trained with point clouds containing information about: 

	1.	� coordinates only
	2.	� coordinates and atomic numbers
	3.	� coordinates, atomic numbers and atomic propertiesAs can be seen from Table S3, the performance of Point-

Net systematically improves when information about the atomic number is incorporated into the point cloud 
(xyz + Z). However, when atomic properties are added to the point cloud (xyz + Z + F) no significant im-
provements (or none at all) are observed.

This may be attributed to the limitation of the PointNet architecture to combine the individual atomic properties 
and extract useful local features—features describing the local chemical environment around each atom—since 
it process each point independently (see Fig. 1). A straightforward approach to bypass this limitation is to 
enrich the point cloud with features that encode local chemical information for an atom, such as atom types25. 
Alternatively, instead of adding local features manually, one can replace PointNet with an architecture capable 
of extracting local features38.

Fig. 2.  Parity plots for conventional model (left) and PointNet model (right) regarding CO2 uptake in MOFs. 
All metrics were measured on the test set. R2, coefficient of determination (unitless); MAE, mean absolute 
error (capacity units); ρ, Spearman’s rho (unitless).
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In order to get some insights into model’s internals, we visualize the critical points of IRMOF-1’s point cloud 
(424 points) after passing it through the PointNet model trained on the MOFs dataset (see Section 3.3 of SI 
for training details). These are the points that contribute to the pooled global feature and hence, these are the 
only points that can contribute to model’s output. In other words, PointNet takes into account only these points 
and discards every other point. As can be seen from Fig. 3, when the point cloud is passed through a randomly 
initialized PointNet, the critical points (117 points, shown in blue) don’t properly account for the geometry of 
the framework. In contrast, when the point cloud is passed through the trained PointNet, the critical points (311 
point, shown in red) effectively summarize the skeleton of the framework, similar to the original application in 
computer vision where the critical points summarize the skeleton of the object33. That is, the output of PointNet 
is dictated by a set of points that effectively capture the geometry of the material.

In conclusion, we demonstrated that AIdsorb can yield accurate predictions regarding gas adsorption in 
porous materials by just using a molecular point cloud as input. As the choice of ML algorithm strongly affects 
the quality of the resulting model, coupling AIdsorb with a more refined architecture38,39 can further improve 
its performance. Additional enhancements on data efficiency or performance can be achieved by employing 
improved training schemes, such as self-supervised pre-training40,41 and auxiliary learning42. Finally, since 
molecular point clouds can essentially represent any chemical system, the presented approach can be extended 
and applied beyond the realm of reticular chemistry, for elucidating any structure-property relationship.

Data & Code Availability
Point clouds used in this work are available from the corresponding author on reasonable request. Labels (gas 
uptake values) and geometrics descriptors are publicly available in: ​h​t​t​p​s​:​​/​/​a​r​c​h​​i​v​e​.​m​a​​t​e​r​i​a​​l​s​c​l​o​u​d​.​o​r​g​/​r​e​c​o​r​d​/​2​
0​1​8​.​0​0​1​6​/​v​3​​​​ (MOFs) and https:​​​//archi​ve.materialscl​oud​.org/r​ecor​d/​20​18.0003/v2 (COFs). The source code of 
“AIdsorb” package is available at: https://github.com/frudakis-research-group/aidsorb. The version used in this 
work is specified by the tag “pointnet_paper”. The package can be installed from PyPI: ​h​t​t​p​s​:​/​/​p​y​p​i​.​o​r​g​/​p​r​o​j​e​c​t​/​a​
i​d​s​o​r​b​/​. Documentation for the package is available at: https://aidsorb.readthedocs.io/en/stable/.
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